Search results for "Synaptic signaling"

showing 10 items of 10 documents

Cannabinoid receptor 1 modulates the autophagic flux independent of mTOR- and BECLIN1-complex

2013

Cannabinoid Receptor 1 (CB1) has been initially described as the receptor for Delta-9-Tetrahydrocannabinol in the central nervous system (CNS), mediating retrograde synaptic signaling of the endocannabinoid system. Beside its expression in various CNS regions, CB1 is ubiquituous in peripheral tissues, where it mediates, among other activities, the cell's energy homeostasis. We sought to examine the role of CB1 in the context of the evolutionarily conserved autophagic machinery, a main constituent of the regulation of the intracellular energy status. Manipulating CB1 by siRNA knockdown in mammalian cells caused an elevated autophagic flux, while the expression of autophagy-related genes rema…

Cannabinoid receptorMorpholinesGreen Fluorescent ProteinsDown-RegulationmTORC1NaphthalenesBiochemistryMiceCellular and Molecular NeurosciencePiperidinesReceptor Cannabinoid CB1RimonabantAutophagymedicineAnimalsHumansEnzyme InhibitorsCannabinoid Receptor AntagonistsCells CulturedPI3K/AKT/mTOR pathwayAdenine NucleotidesChemistryTOR Serine-Threonine KinasesAutophagyMembrane ProteinsCalcium Channel BlockersEmbryo MammalianEndocannabinoid systemBenzoxazinesCell biologyMice Inbred C57BLnervous systemAstrocytesPyrazolesBeclin-1lipids (amino acids peptides and proteins)MacrolidesSynaptic signalingRimonabantApoptosis Regulatory ProteinsFlux (metabolism)medicine.drugJournal of Neurochemistry
researchProduct

Holo-APP and G-protein-mediated signaling are required for sAPPa-induced activation of the Akt survival pathway

2014

International audience; Accumulating evidence indicates that loss of physiologic amyloid precursor protein (APP) function leads to reduced neuronal plasticity, diminished synaptic signaling and enhanced susceptibility of neurons to cellular stress during brain aging. Here we investigated the neuroprotective function of the soluble APP ectodomain sAPPa (soluble APPa), which is generated by cleavage of APP by a-secretase along the non-amyloidogenic pathway. Recombinant sAPPa protected primary hippocampal neurons and SH-SY5Y neuroblastoma cells from cell death induced by trophic factor deprivation. We show that this protective effect is abrogated in neurons from APP-knockout animals and APP-de…

Cancer ResearchCell SurvivalADAM10Amino Acid MotifsImmunology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyIn Vitro TechniquesHydroxamic AcidsHippocampusNeuroprotectionCell LineADAM10 ProteinAmyloid beta-Protein PrecursorMicePhosphatidylinositol 3-Kinases03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemental disordersAmyloid precursor proteinAnimalsHumansProtein kinase BPI3K/AKT/mTOR pathwayPhosphoinositide-3 Kinase Inhibitors030304 developmental biologyMice Knockout0303 health sciencesbiologyBiochemistry and Molecular BiologyMembrane ProteinsDipeptidesCell BiologyMolecular biologyRecombinant ProteinsMice Inbred C57BLADAM ProteinsPertussis Toxinbiology.proteinOriginal ArticleSynaptic signalingAmyloid Precursor Protein SecretasesNeuron deathProto-Oncogene Proteins c-aktAmyloid precursor protein secretase030217 neurology & neurosurgeryBiokemi och molekylärbiologiSignal Transduction
researchProduct

Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures.

2020

The Alzheimer disease-associated multifunctional low-density lipoprotein receptor-related protein-1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock-out (KO) of the receptor is embryonically lethal. To unravel the receptors' role in the developing brain we generated a mouse mutant by specifically targeting radial glia stem cells of the dorsal telencephalon. The low-density lipoprotein receptor-related protein-1 lineage-restricted KO female and male mice, in contrast to available models, developed a severe neurological phenotype with generalized seizures duri…

0301 basic medicineMaleEpendymoglial CellsBiology03 medical and health sciencesCellular and Molecular NeuroscienceEpilepsyMice0302 clinical medicineProsencephalonSeizuresmedicineAnimalsReceptors LipoproteinLipoprotein receptor-related proteinmedicine.diseaseNeural stem cellLipoproteins LDL030104 developmental biologymedicine.anatomical_structureNeurologyAstrocytesTissue Plasminogen ActivatorForebrainFemaleSynaptic signalingStem cellPostsynaptic densityNeuroscience030217 neurology & neurosurgeryAstrocyteGliaREFERENCES
researchProduct

Membrane-Derived Phospholipids Control Synaptic Neurotransmission and Plasticity

2015

Synaptic communication is a dynamic process that is key to the regulation of neuronal excitability and information processing in the brain. To date, however, the molecular signals controlling synaptic dynamics have been poorly understood. Membrane-derived bioactive phospholipids are potential candidates to control short-term tuning of synaptic signaling, a plastic event essential for information processing at both the cellular and neuronal network levels in the brain. Here, we showed that phospholipids affect excitatory and inhibitory neurotransmission by different degrees, loci, and mechanisms of action. Signaling triggered by lysophosphatidic acid (LPA) evoked rapid and reversible depress…

MalePatch-Clamp TechniquesQH301-705.5NeurotransmissionBiologyInhibitory postsynaptic potentialSynaptic TransmissionGeneral Biochemistry Genetics and Molecular BiologyMicePregnancySynaptic augmentationMetaplasticityAnimalsRats WistarBiology (General)Motor Neuronsrho-Associated KinasesNeuronal PlasticityGeneral Immunology and MicrobiologyCalcineurinGeneral NeuroscienceReceptors GABA-ACell biologySynaptic fatigueBiochemistrySynapsesSynaptic plasticityExcitatory postsynaptic potentialFemalelipids (amino acids peptides and proteins)Synaptic signalingLysophospholipidsrhoA GTP-Binding ProteinGeneral Agricultural and Biological SciencesResearch Article
researchProduct

Targeted rescue of synaptic plasticity improves cognitive decline after severe systemic inflammation

2021

AbstractSepsis-associated encephalopathy (SAE) is a frequent complication in patients with severe systemic infection resulting in acute brain dysfunction and incapacitating long-term sequelae. SAE includes delirium, premature death, post-traumatic stress disorder, and major long-term cognitive impairment. The underlying pathophysiology of SAE is largely unresolved and specific treatment options are missing. We induced the peritoneal contamination and infection (PCI) sepsis model in 769 mice and compared these with 259 control mice. We found that experimental sepsis causes synaptic pathology in the brain characterized by severely disordered synaptic plasticity with reduced long-term potentia…

Arc (protein)Synaptic scalingDendritic spinebusiness.industrySynaptic plasticityExcitatory postsynaptic potentialMedicineHippocampusLong-term potentiationSynaptic signalingbusinessNeuroscience
researchProduct

NG2/CSPG4 and progranulin in the posttraumatic glial scar.

2018

Traumatic injury of the central nervous system is one of the leading causes of death and disability in young adults. Failure of regeneration is caused by autonomous neuronal obstacles and by formation of the glial scar, which is essential to seal the injury but also constitutes a barrier for regrowing axons. The scar center is highly inflammatory and populated by NG2+ glia, whereas astrocytes form the sealing border and trap regrowing axons, suggesting that the non-permissive environment of activated astrocytes and extracellular matrix components is one of the reasons for the regenerative failure. Particularly, secreted chondroitin-sulfate proteoglycans, CSPGs, of the lectican family hinder…

0301 basic medicineCentral nervous systemPerlecanCell CommunicationBiologyGlial scarExtracellular matrix03 medical and health scienceschemistry.chemical_compoundCicatrix0302 clinical medicineProgranulinsmedicineLecticanAnimalsHumansMolecular BiologyMicrogliaReceptors NotchMembrane ProteinsCell biology030104 developmental biologymedicine.anatomical_structurenervous systemchemistryChondroitin Sulfate ProteoglycansChondroitin sulfate proteoglycanBrain InjuriesImmunologybiology.proteinSynaptic signalingNeuroglia030217 neurology & neurosurgeryHeparan Sulfate ProteoglycansSignal TransductionMatrix biology : journal of the International Society for Matrix Biology
researchProduct

Integrative proteomics: functional and molecular characterization of a particular glutamate-related neuregulin isoform.

2005

Glutamate is the major excitatory neurotransmitter in the mammalian brain and is related to memory by calcium-conducting receptors. Neuregulins have emerged as long-term modulating molecules of synaptic signaling by glutamate receptors, playing a role in some cognition/memory-related disorders and moreover being part of transient functional microdomains, called lipid rafts. Here we characterize one specific isoform of neuregulin as a central biomarker for glutamate-related signaling, integrating results from in vitro and in vivo models by a differential functional and proteomic approach.

ProteomicsNeuregulin-1Glutamic AcidNerve Tissue ProteinsBiochemistryHippocampusRats Sprague-DawleyAlzheimer DiseaseAnimalsHumansLearningProtein IsoformsNeuregulin 1ReceptorLipid raftCells CulturedbiologyGlutamate receptorGeneral ChemistryGlutamic acidCell biologyRatsbiology.proteinNeuregulinCalciumFemaleSynaptic signalingSignal transductionBiomarkersSignal TransductionJournal of proteome research
researchProduct

Genes, dopamine and cortical signal-to-noise ratio in schizophrenia.

2004

A large body of phenomenological evidence implicates abnormal connectivity of brain macrocircuitry and microcircuitry in schizophrenia. Recent discoveries of susceptibility genes for schizophrenia have zeroed in on the synaptic signaling machinery of cortical microcircuits as fundamental to disease causation and have militated for further revision of the role of dopamine in this illness. Dopamine, long implicated in psychosis and in antipsychotic drug effects, is crucial in optimizing signal-to-noise ratio of local cortical microcircuits. This action of dopamine is achieved principally by D1- and D2-receptor-mediated effects on pyramidal and local circuit neurons, which mediate neuronal exc…

Cerebral CortexPsychosisGeneral NeuroscienceDopamineCentral nervous systemGlutamate receptormedicine.diseasechemistry.chemical_compoundmedicine.anatomical_structurechemistryDopamineSchizophreniamedicineSchizophreniaHumansSynaptic signalingNerve NetPsychologyNeurotransmitterNeuroscienceDopamine hypothesis of schizophreniamedicine.drugTrends in neurosciences
researchProduct

The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

2014

NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron–glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin– neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clus…

0301 basic medicineCognitive NeuroscienceNeurexinSynaptogenesisGlutamic AcidNeuroliginMice TransgenicBiologyNeurotransmissionHippocampusSynaptic Transmission03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinePostsynaptic potentialAnimalsReceptors AMPAAntigensNeuronsMembrane Proteins030104 developmental biologynervous systemSynaptic plasticitySynapsesProteoglycansSynaptic signalingNeurosciencePostsynaptic densityNeuroglia030217 neurology & neurosurgeryCerebral cortex (New York, N.Y. : 1991)
researchProduct

NECAB2 participates in an endosomal pathway of mitochondrial stress response at striatal synapses

2021

Synaptic signaling depends on ATP generated by mitochondria. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction and thus requires efficient mitochondrial quality control. We found that the neuronal calcium-binding protein NECAB2 ensures synaptic function in the striatum by increasing mitochondrial efficiency. NECAB2 associates with early endosomes and mitochondria at striatal synapses. Loss of NECAB2 dysregulates proteins of the endosomal ESCRT machinery and oxidative phosphorylation. Mitochondria from NECAB2-deficient mice are more abundant but less efficient. These mitochondria exhibit increased respiration and superoxide production but produ…

Sensory gatingEndosomeChemistrySuperoxideOxidative phosphorylationStriatumMitochondrionmedicine.disease_causeCell biologychemistry.chemical_compoundmedicine.anatomical_structureddc:570medicineSynaptic signalingOxidative stress
researchProduct